

Aral Sea Basin Transboundary Water Early Warning Bulletin

May – June 2021

A need for production and periodic and timely issue of the Bulletin as an information product for timely collection and dissemination of information on water-related, environmental, and climatic situation in the Aral Sea basin with the purpose to prevent problems or disputes arising was addressed during a seminar on "Early Warning on Potential Transboundary Water Problem Situations in Central Asia", which was held in the city of Almaty on 26th of September 2011. The states in the Aral Sea basin have expressed their support for such initiative in discussions with the UN Regional Centre for Preventive Diplomacy for Central Asia. The Central Asian states have repeatedly shown their interest in enhancing the regional capacities for early warning and preparedness to potential hazards. Moreover, this was reflected in the Aral Sea Basin Programs (ASBP-3 and ASBP-4).

The Bulletin is a resource, which provides all the Central Asian states and their international partners with improved capacity to monitor regularly the status of transboundary rivers and warn early of potential issues that require attention.

Four early warning bulletins are to be issued as part of the Project in 2021. The format and content of the bulletins have been agreed with the client and with all organizations that provided source information. The second bulletin contains the actual information on the Syr Darya and Amu Darya basins for May 2021 and the forecast for June.

Information sources include:

- BWO Amu Darya and BWO Syr Darya data on water resources, their distribution in time (day) and by river reach, operation regimes of reservoirs, inflow (planned versus actual) to the Aral Sea,
- CDC "Energy" data on operation regimes of hydroelectric power stations (HEPS), electricity generation (planned, actual),
- Aral-Syrdarya BWA data on lower reaches of the Syr Darya River (components of the water balance from the tail-water of the Shardara reservoir to the Northern Aral Sea),
- Open Internet sources climatic information.

Digest of CA news for May

Source: http://cawater-info.net/news/index.htm

Tajikistan and Kyrgyzstan dispute over water annually. Why it turned into outrage this year? — BBC, *knews.kg*

Unique hydrological structure to be built at Kopetdag foothills in Turkmenistan, *sng.today*

Kazakh-Chinese reservoir to be built on the Khorgos River, *kaztag.kz*

Tajikistan analyzed the disaster risk reduction system for agriculture, *east-fruit.com*

CO2 reached maximum concentrations over 3 million years, vokrugsveta.ua

What hydrology can tell us about climate change in Central Asia, *thethirdpole.net*

Central Asia courts green energy investors, beltandroad.news

How Kazakhstan and Kyrgyzstan solve water security issues, *lenta.inform.kz*

Kazakhstan and China assess water resources in the transboundary river basin, *kaztag.kz*

Berdymukhamedov acknowledged the expected water shortage and ordered reservoir cleanings, *hronikatm.com*

Drought in Turkmenistan can be deeper than in 2018, *hronikatm.com*

Transmission line stretching from Turkmen Mary Hydropower to Afghan Herat is close to completion, *arzuw.news*

EBRD, EIB and PROPARCO allocate 87.4 million Euros for Total Eren solar plant in Uzbekistan, *uzdaily.uz*

Institute of Energy Problems will be established in Uzbekistan, norma.uz

Regular 80th meeting of the Interstate Commission for Water Coordination in Central Asia, *cawater-info.net*

West pushes Central Asia to Afghanistan, *ia-centr.ru*

Wet and dry hydrological cycles in Toktogul reservoir over the past 36 years, *kabar.kg*

Free environmental database launched in Kyrgyzstan, *eco.akipress.org*

Tajikistan and Kazakhstan discuss environmental cooperation aspects, avesta.tj

Coordinated actions for elimination of natural disaster effects in the south of Tajikistan discussed in Kulyab, *avesta.tj*

Tajikistan boosts collaboration as part of a disaster risk reduction project, *asiaplustj.info*

7 new automatic weather stations installed in Tajikistan, avesta.tj

UN unanimously adopted a resolution on the status of the Aral Sea region, *uz.sputniknews.ru*

View from IFAS: UN General Assembly resolution affirms UN's support to efforts and initiatives of Uzbekistan, *dunyo.info*

Kyrgyzstan, Tajikistan: Solving water puzzle key to preventing fresh fighting, *eurasianet.org*

C5+1 between Central Asia and Israel is under consideration, orient.tm

Kazakhstan will pay Russia higher price for water as in the past year but get less, *ru.kyrgyztoday.org*

Tokayev delivered a video message at the Global roundtable, *zakon.kz*

Regional "Green Central Asia" Initiative discussed in Dushanbe, *dialog.tj*

President of Turkmenistan took part in the UN High-Level Forum, *turkmenportal.com*

Amu Darya River Basin

Actual Situation in May and Forecast for June

In May, the available usable river water resources estimated as natural, non-regulated river flow plus lateral inflow into the river and minus losses amounted to 6,828 Mm^3 . The regulated flow of the Amu Darya at the Atamyrat (Kerki) section was 4,290 Mm^3 that virtually matched the expected flow. In June, the available usable river water resources are expected to be 9,570 million m^3 , i.e. will increase 1.4 times as compared to May.

Inflow to the Nurek reservoir from the Vakhsh River was 2,443 million m³ in May. Water releases from the reservoir amounted to 1,693 million m³ (10% less than planned). In May, the reservoir was filled with water by 548 million m³ and reached the volume of 7,305 million m³ by the end of month (112% of planned volume). Water losses in the reservoir as water balance discrepancy were zero, and unrecorded inflow was detected in the amount of 249 million m³ (3% of water volume in the reservoir). It is expected that in June 2,592 million m³ of water will flow into the Nurek reservoir. The water volume will increase to 7,884 million m³, and water releases from the reservoir will increase to 2,013 million m³.

Inflow to Tuyamuyun waterworks facility (TMWF) was 3,192 million m³ in May (95% of the forecast volume). Water releases from TMWF into the Amu Darya River amounted to 1,643 million m³ (92%), while water diversion from the reservoir into canals was 534 million m³ (82% of planned one). In May, the water volume in the reservoirs of TMWF changed slightly from 2,414 million m³ at the beginning of month to 2,420 million m³ at the end of month (only 71% of the expected accumulation). Reservoir water balance discrepancy is estimated at 1,048 million m³ (!); this is about 33% of inflow to the waterworks facility. The discrepancy is negative and indicates to substantial water losses and, probably, to overestimated inflow to the facility. Inflow to TMWF will increase to 4,524 million m³ in June. TMWF reservoirs will accumulate water and their volume will be about 3,540 million m³. Water diversion will increase to 840 million m³.

Nurek HEPS generated 837 million kWh of electrical energy in May. The discharge through turbines was 632 m^3 /s, while the head was 225 m. Sterile spills at HEPS were not observed.

In May, TMWF HEPS generated 17 million kWh only. Generation started since the second ten-days of the month.

In May, water along the Amu Darya River was distributed unevenly: in the middle reaches at Kelif g/s (section upstream of intake to Garagumdarya) – Birata g/s (inflow to TMWF) the water shortage was is the amount of 514 million m^3 (18% of the plan), and in the lower reaches at Tuyamuyun g/s – Samanbay g/s the water shortage was 237 million m^3 (20% of the plan).

In May, open-channel balance in the reaches showed negative discrepancies that can be attributed to water losses: 771 million m^3 (13% of river flow at Kelif g/s) in the middle reaches and 617 million m^3 (38% of Amu Darya river flow downstream of TMWF - Tuyamuyun g/s) in the lower reaches.

In May, flow of the Amu Darya River changed as follows by key gauging station: Kelif g/s -5,950 million m³ (92% of the forecast), Birata g/s (inflow to TMWF) -3,192 million m³ (95% of the forecast), Tuyamuyun g/s (downstream of TMWF) -1,643 million m³ (92%), and Samanbay g/s - only 67 million m³ (54% of planned supply).

In June, water withdrawal will be increased to 2,958 million m^3 in the first reach and to 1,795 million m^3 in the second reach. As expected, flow along the Amu Darya River will be transformed as follows: Kelif g/s – 8,009 million m^3 , Birata g/s – 4,524 million m^3 , Tuyamuyun g/s – 2,566 million m^3 , and Samanbay g/s - 217 million m^3 .

In May, inflow to the Large Aral Sea from the Amu Darya River and collecting drains (collectors) amounted to 190 million m³ and no water was discharged from the Northern Aral Sea. The water level in the eastern part of the Large Aral Sea averaged 26.5 m, the water surface area was 1.2 thousand km², and the water volume was 1 km³. In the western part, the water level varied within 22.14...22.07 m, the water surface area was 2.33...2.31 thousand km², and the water volume was 33.8...33.5 km³. Evaporation from 1 km² of water surface of the Large Aral Sea was 0.105 million m³ in May.

It is expected that the inflow to the Large Aral Sea will be 217 million m^3 in June. By the end of June, in the eastern part of the Large Aral Sea the water level will be 26.4 m, the water surface area will be 1.1 thousand km², and the water volume will be 0.9 km³. In the western part of the Large Aral Sea the water level will be 21.9 m, the water surface area will be 2.3 thousand km², and the water volume will be 33.1 km³. Evaporation from 1 km² of water surface of the Large Aral Sea will be 0.212 million m³ in June.

The sections below show daily and ten-day data on climate and water management (reservoirs, HEPS, water distribution).

Climate

Weather station		Location								
Riverhead	Latitude	Latitude Longitude Altitude above sea level, m								
Kurgan-Tyube	37.82	68.78	429							
Penzhekent	39.48	67.63	1015							
Panj	37.23	69.08	363							

Air temperature (**T**)

Station	Dom	amatan		May		June		
Station	rara	ameter	I ten-day	II ten-day	III ten-day	I ten-day	II ten-day	III ten-day
Domi	T°C	Forecast	23.0	24.0	24.0	27.0	28.0	30.0
Panj I, C	Actual	24.3	24.6	27.0				
Kungan Truha	T°C	Forecast	24.0	24.0	26.0	27.0	28.0	30.0
Kurgan-Tyube	1, C	Actual	24.1	24.4	26.8			
Penzhekent $T, ^{\circ}C$	Forecast	19.0	21.0	23.0	24.0	25.0	27.0	
	1, C	Actual	19.4	21.3	23.9			

Object						
Amu Darya						
Nurek reservoir						
Atamyrat gauging station						

Water volume (W)

Object	Object Parameter			May		June		
Object			I ten-day	II ten-day	III ten-day	I ten-day	II ten-day	III ten-day
River runoff:	W Mm ³	Forecast	1106	1469	1728.0	1814.4	2039.0	2160
Atamyrat g/s	w, mm	Actual	1237	1693	1360			
Water withdrawal:	W Mas ³	Forecast	1012	1056	1107	1153	1167	1181
Atamyrat g/s	w, mm	Actual	823	805	855			
Nurek reservoir	W Mas ³	Forecast	0	86	130	198.7	190.1	190
down (-)	w, mm	Actual	279	134	133.92			
Natural water	W M 3	Forecast	2117.5	2611.4	2965.1	3166	3397	3531
Atamyrat g/s	w, mm	Actual	2339.7	2631.0	2348.9			
Lateral inflow:	W Mar ³	Forecast	101.1	97.4	74	92	81	82
Atamyrat g/s	w, mm	Actual	101.1	97.4	74			
Open channel	W, Mm^3	Forecast	165.7	203.7	231	241	264	276
of Atamyrat g/s		Actual	781.3	-69.7	53			
Available usable	W Mm ³	Forecast	2053	2505	2808	3017	3214	3337
water resources W, Mm ³	w, Mm	Actual	1660	2798	2370			

Reservoirs and HEPS

		Location		Characteristics				
Reservoir	Latitude	Longitude	Altitude above sea level, m	Length, km	Width, km	Water- surface area, km²	Full volume, km ³	Full reservoir level, m
Nurek	38.40	69.47	864	70	1	98	10.50	910
Tuyamuyun	41.03	61.73	130	55	20	670	6.86	130

	r						.			
Decentrain	Dow	Demonster		May		June				
Reservoir	Reservoir Para		I ten-day	II ten-day	III ten-day	I ten-day	II ten-day	III ten-day		
	I Mm ³	Forecast	562	691	855	864.0	864.0	864		
	1, MIM	Actual	825.6	815.6	802					
Numels accompoint	$D M m^3$	Planned	562	605	713	665.3	673.9	674		
Nurek reservoir	K, MM	Actual	503	537	654					
	W, Mm^3	Planned	6307.0	6393.4	6536.0	7503.7	7693.8	7884		
		Actual	6757	7133	7305					
	I Man ³	Forecast	820.4	1116.3	1436.8	1378.8	1527	1618		
Reservoirs of	1, MM	Actual	349.1	1607.0	1236					
Tuyamuyun waterworks	$D M m^3$	Planned	362.9	656.6	760.3	794.9	864.0	907		
	K, MM	Actual	201	682	759					
facility	W/ Mm ³	Planned	2751	2987	3398	2758	3144	3536		
	W, Mm ²	Actual	2414	2622	2420					

Inflow (**I**), Releases (**R**), Volume (**W**)

Generation (G), Energy losses through sterile spills (L), Discharge through turbines (Q), Sterile spills (R), Head (H)

HEDG	Donomo	tan	May			
ners	rarame	ler	I ten-day	II ten-day	III ten-day	
	G, M kWh	Actual	26.58	30.01	31.34	
	L, M kWh	Actual	0.0	0.0	0.0	
Nurek	$Q, m^{3}/s$	Actual	581.7	621.0	688.3	
	$R, m^{3}/s$	Actual	0.0	0.0	0.0	
	H, m Actual		222.2	223.7	227.7	

Water distribution

River reaches
Kelif gauging station (upstream of intake to Garagumdarya) – Birata gauging station (Darganata)
Tuyamuyun gauging station (tail water of Tuyamuyun waterworks facility) – Samanbay settlement
Large Aral Sea

Valif Dimata	Donomotor			May		June		
Kelli - Birata	Para	ameter	I ten-day	II ten-day	III ten-day	I ten-day	II ten-day	III ten-day
Inflow from upper	W Mm ³	Forecast	1718	2100	2615	2479	2705	2825
reach	w, wm	Actual	1710	2200	2040			
Lateral inflow	W Mm ³	Forecast	101	97	81	92	81	82
Lateral IIIIow	w, wm	Actual	101	97	81			
Water with drawal	W Mm ³	Planned	855	902	1024	950	995	1013
water withurawar	w, wm	Actual	680	759	827			
Lossos	W Mm ³	Forecast	143.9	179.0	235	241	264	276
Losses w, Mm	Actual	782	-69	58				
Outflow to lower	W. Mm ³	Forecast	820.4	1116.3	1437	1378.8	1527	1618
reach	<i>w, mm</i>	Actual	1718	2100	2615			

Water volume (W)

Water volume (W)

Tuyamuyun -	Baramatar		May			June		
Samanbay	Para	Parameter		II ten-day	III ten-day	I ten-day	II ten-day	III ten-day
Inflow from upper	W Mm ³	Forecast	362.9	656.6	760	794.9	864	907
reach	w, mm	Actual	201	682	759			
Lateral inflow	W Mm ³	Forecast	0	0	0	0	0	0
Lateral IIIIow	w, mm	Actual	0	0	0			
Water withdrawal ¹	W Mm ³	Planned	225	449	523	553.0	605	638
water withdrawar	w, mm	Actual	131.9	335	493			
Lossos	W Mm ³	Forecast	104	164	190	198.7	216	226
Losses	<i>w, mm</i>	Actual	104	164	190			
Outflow to lower	W Man ³	Forecast	34.56	43.20	47.52	43.2	43	43
reach	vv, Mm	Actual	21.5	21.4	23.7			

¹ Note: Including supply to the system of lakes and environmental water releases into canals

Water volume (W), Level (H), Surface area (S)

Longo Anal Soo	Dana	motor		May		June		
Large Arai Sea Para		meter	I ten-day	II ten-day	III ten-day	I ten-day	II ten-day	III ten-day
Inflow	W Mm ³	Planned	65.00	65.00	71.50	70.00	72.00	75.00
IIIIOw	w, wim	Actual	60.00	62.00	68.20			
Eastern part, water	W Man ³	Forecast	1.04	1.05	1.06	0.99	0.96	0.92
volume	w, wm	Actual	1.02	1.02	1.01			
Eastann nant laval	II m	Forecast	26.52	26.53	26.55	26.48	26.45	26.42
Eastern part, level	п, т	Actual	26.51	26.51	26.50			
Factorn part area	\mathbf{S} the km 2	Forecast	1.21	1.23	1.24	1.17	1.13	1.10
Eastern part, area	<i>S, IN.KM</i>	Actual	1.20	1.20	1.20			
Western part, water	W Mm ³	Forecast	33.80	33.82	33.85	33.45	33.29	33.12
volume	w, wm	Actual	33.70	33.62	33.58			
Western part, level <i>H</i> , <i>m</i>	II m	Forecast	22.15	22.15	22.16	22.05	22.00	21.95
	п, т	Actual	22.15	22.11	22.08			
Western part area	$S th km^2$	Forecast	2.33	2.33	2.34	2.30	2.29	2.28
Western part, area	$S, th.km^2$	Actual	2.33	2.32	2.31			

Syr Darya River Basin

Actual Situation in May and Forecast for June

In May, the available usable water resources in the Syr Darya River that were estimated as the sum of flows of the Naryn, the Karadarya and the Chichik rivers based on inflow to Toktogul, Andizhan, and Charvak reservoirs plus lateral inflow to the rivers and minus losses amounted to 6,027 million m³. The cumulative inflow to the three reservoirs was 4,129 million m³. In June, the available usable water resources are expected in the amount of 5,235 million m³, including 3,694 million m³ of inflow to the three reservoirs.

In May, inflow to the Toktogul reservoir was 2,266 million m³, and water releases from the reservoir amounted to 749 million m³. The water volume in the Toktogul reservoir was only 8,680 million m³ by the beginning of month and in the course of May increased by 1,480 million m³(!), reaching 10,160 million m³ (109% of accumulation plan) by the end of month. The reservoir water balance showed a negative discrepancy of 37 million m³, indicating to water losses in the reservoir. It is expected that in June the Toktogul reservoir will accumulate water and by the end of month the water volume will be 11,297 million m³; inflow to the reservoir is expected in the amount of 2,132 million m³, while water releases are planned at 995 million m³.

In May, inflow to the Andizhan reservoir was 686 million m³, and water releases from the reservoir were 319 million m³. The reservoir's water volume increased from 798 million m³ at the beginning of month to 1,184 million m³ at the end of month. In June, inflow to the Andizhan reservoir is expected to be 367 million m³ and water releases will be 337 million m³. The reservoir will accumulate water to 1,214 million m³.

Inflow to the Bakhri Tojik reservoir was 1,051 million m³ (given the forecast of 1,039 million m³), while water releases from the reservoir were 1,094 million m³ (given the plan of 1,029 million m³) in May. The water volume changed insignificantly from 3,458 million m³ at the beginning of month to 3,477 million m³ by the end of month. The unrecorded inflow to the reservoir was detected by the balance method in the amount of 63 million m³. In June, inflow to the Bakhri Tojik reservoir is expected to decrease to 797 million m³, while water releases from the reservoir will increase to 1,274 million m³. The reservoir will be drawn down to 3,000 million m³.

In May, the Charvak reservoir was filled with water from 781 million m^3 to 1,519 million m^3 (20% more than planned). Inflow to the reservoir was 1,177 million m^3 , and water releases were 586 million m^3 . In June, the Charvak reservoir will accumulate water and its volume will increase to 2,108 million m^3 by the end of month. Inflow to the reservoir is expected in the amount of 1,194 million m^3 , while 605 million m^3 of water is to be released.

Inflow to the Shardara reservoir was 281 million m^3 only (60% of the forecast) and water releases from the reservoir amounted to 690 million m^3 (50% of planned) in May. The reservoir was drawn down from 4,841 million m^3 to 4,120 million m^3 , and water was not discharged into Arnasai. Water diversion from the reservoir amounted to 114 million m^3 . Balance discrepancy (indicating to flow losses) was 189 million m^3 (about 5% of the reservoir's water volume). In June, inflow to the Shardara reservoir is expected to increase to 518 million m^3 , while planned water releases will increase to 1,348 million m^3 . This will lead to lowering of reservoir's water volume to 3,109 million m^3 by the end of month. Water discharge into Arnasai is not planned in June.

The Koksarai reservoir did not accumulate water in May. Water discharge from the reservoir into the Syr Darya River amounted to 873 million m³. The water volume in the reservoir decreased from 1,806 million m³ to 938 million m³. Water losses in the reservoir were estimated at 5 million m³. Accumulation of water in the Koksarai reservoir is not planned in June. It is planned

to discharge water from the reservoir into the river in the amount of 691 million m^3 . The reservoir will be drawn down to 247 million m^3 .

In May, energy generation by the cascade of Naryn HEPS amounted to 765 million kWh (under energy-generation regime) against planned 651 million kWh, including: Toktogul HEPS - 244 million kWh. The average discharge through turbines of Toktogul HEPS was 278 m³/s, and the average head at HEPS was 136 m. No sterile spills were observed. The plan of energy generation for June for the cascade of Naryn HEPS is set at 855 million kWh, including 333 million kWh for Toktogul HEPS.

In May, the total generation at large HEPS of Uzbekistan amounted to 199 million kWh, of which: 143 million kWh at Charvak HEPS, 14 million kWh at Farkhad HEPS, and 42 million kWh at Andizhan HEPS. The discharge at Charvak HEPS was 176 m^3/s , and the head was 124 m. The discharge at Farkhad HEPS was 79 m^3/s , and the head was 31 m. For Andizhan HEPS, the discharge was 69 m^3/s , and the head was 95 m.

Energy generation by HEPS of the Bakhri Tojik reservoir and by Shardara HEPS amounted to 40 million kWh, respectively, in May. Water discharge at HEPS of Bakhri Tojik was 374 m^3/s , while the head was 20 m. Discharge at Shardara HEPS was 249 m^3/s , and the head was 21 m only.

In May, water was distributed unevenly along the Naryn River and the Syr Darya River. In the reach of Toktogul HEPS – Uchkurgan waterworks facility (tail-water) the water shortage accounted for 6% of planned water withdrawal. The balance discrepancy that can be attributed to open channel losses was 90 million $m^3 (12\% \text{ of river flow at the head of the reach)}$. In the reach of Uchkurgan waterworks facility (tail-water) – Akjar g/s (inflow to the Bakhri Tojik reservoir) water shortage was estimated at 21%, and the balance discrepancy (water losses) was 19% of the flow at the head of the reach. In the reach of Bakhri Tojik reservoir – Shardara reservoir water shortage accounted for 15%, and the open-channel balance discrepancy (losses) was 13%. In the lower reaches of the Syr Darya River (downstream of Shardara reservoir) the open-channel balance discrepancy was recorded at 288 million $m^3 - 18\%$ of river flow at the head of the reach (downstream of spillway from the Koksarai reservoir into the river).

In May, the flow along the Naryn – Syr Darya rivers changed as follows: discharge from the Toktogul reservoir – 749 million m^3 (93% of BWO SyrDarya's schedule), Akjar g/s (inflow to the Bakhri Tojik reservoir) – 1,051 million m^3 (101% of the forecast), inflow to the Shardara reservoir – only 281 million m^3 (60% of the forecast), Syr Darya – tail-water of the Shardara reservoir – 690 million m^3 (50% of BWO SyrDarya's schedule), and, inflow to the Northern Aral Sea - 24 million m^3 (89% of the forecast).

In May, inflow to the Northern Aral Sea was 24 million m^3 only. No water was discharged from the Northern Aral Sea into the Large Aral Sea (Amu Darya Basin). The water level varied within 41.9...42 m. The water surface area was 3.11...3.14 thousand km² and the water volume was 24.9...25.2 km³.

It is expected that in June inflow to the Northern Aral Sea will decrease to 13 million m^3 , and no discharge into the Large Aral Sea will be made. The water level will be 41.8 m, the water surface area will be 3.1 thousand km², and the water volume will be 24.6 km³ by the end of month.

The sections below show daily and ten-day data on climate and water management (reservoirs, HEPS, water distribution).

Climate

Weather station	Location									
Riverhead	Latitude	Latitude Longitude Altitude above sea level, m								
Naryn	41.43	76.00	2041							
Dzhalal-Abad	40.92	72.95	765							
Pskem	41.90	70.37	1258							

Air temperature (**T**)

Station	Dom	amatan		May		June			
Station	rar	ameter	I ten-day	II ten-day	III ten-day	I ten-day	II ten-day	III ten-day	
Nomm	T °C	Forecast	12.0	12.0	14.0	16.0	17.0	19.0	
Naryn	1. C	Actual	15.8	7.1	15.3				
Dahalal Ahad	T °C	Forecast	22.0	22.0	24.0	28.0	30.0	32.0	
Dzilalal-Abau	1. C	Actual	25.7	25.0	26.8				
Pskem 7	T °C	Forecast	18.0	19.0	22.0	22.0	23.0	24.0	
	<i>I</i> . C	Actual	19.1	21.0	21.3				

Water resources

Object
Naryn River (inflow to Toktogul)
Karadarya River (inflow to Andizhan)
Chirchik River (inflow to Charvak)
Syr Darya River (up to Shardara)

Water volume (W)

Object	Donomotor			May			June	
Object	Para	imeter	I ten-day	II ten-day	III ten-day	I ten-day	II ten-day	III ten-day
Inflow to Toktogul	W Mm ³	Forecast	467	467	513.8	711	711	710.8
reservoir	w, mm	Actual	926	713	627.6			
Inflow to Andizhan	W M ³	Forecast	173	173	190.1	143	121	103.7
reservoir	w, mm	Actual	270	260	156.7			
Inflow to Charvak	W M ³	Forecast	290	326	382.1	397	404	392.3
reservoir	w, mm	Actual	377	386	413.8			
Sum of inflows to	W, Mm ³	Forecast	930	966	1086.0	1251	1236	1206.8
reservoirs		Actual	1573	1358	1198.1			
Lateral inflow up to	W M ³	Forecast	643	647	710.3	532	588	603.3
Shardara	w, mm	Actual	542	522	943.5			
T	HZ M ³	Forecast	34	34	41.3	60	60	60.4
Losses	w, Mm	Actual	34	34	41.3			
Available usable	W. Mars ³	Forecast	1539	1579	1755.0	1722	1764	1749.6
water resources	W, Mm^3	Actual	2081	1846	2100.4			

Reservoirs and HEPS

		Location		Characteristics					
Reservoir	Latitude	Longitude	Altitude above sea level, m	Length, km	Width, km	Water- surface area, km²	Full volume, km ³	Full reservoir level, m	
Toktogul	41.80	72.87	880	65	12	284	19.50	215	
Andizhan	40.77	73.11	900	36	1.5-12	56	0.19	905	
Bakhri Tojik	40.29	70.07	344	75	20	520	4.16	348	
Charvak	41.63	70.03	869	15	3	37	1.90	906	
Shardara	41.20	67.99	250	80	25	783	5.70	252	

Descrite	D			May			June	
Reservoir	Para	ameter	I ten-day	II ten-day	III ten-day	I ten-day	II ten-day	III ten-day
	I Man ³	Forecast	467.11	467.11	513.82	710.81	710.81	710.81
	I, MM	Actual	925.78	712.63	627.61			
Tolto and accompany	$D M m^3$	Planned	259.20	259.20	285.12	331.78	331.78	331.78
Toktogul reservoir	K, MIII	Actual	228.87	259.89	259.98			
	W Mm ³	Planned	8868	9076	9305	10539	10918	11297
	w, wm	Actual	9328	9827	10160			
	I Man ³	Forecast	172.80	172.80	190.08	142.56	120.96	103.68
	I, Mm ⁻	Actual	269.74	259.80	156.73			
Andizhan	D M ³	Planned	120.96	120.96	133.06	103.68	103.68	129.60
reservoir	R, Mm ²	Actual	89.34	104.54	125.19			
	W M ³	Planned	844	896	953	1223	1240	1214
	w, wm	Actual	955	1140	1184			
	I, Mm^3	Forecast	290.30	325.73	382.05	397.44	404.35	392.26
		Actual	377.48	385.80	413.80			
Chamiels measured	R, Mm^3	Planned	146.88	159.84	185.33	181.44	190.08	233.28
Charvak reservoir		Actual	156.56	184.55	245.20			
	W, Mm^3	Planned	902	1068	1265	1735	1949	2108
		Actual	1038	1296	1519			
	I Man ³	Forecast	329.50	342.02	367.13	288.22	264.33	244.75
	I, MM	Actual	402.19	367.46	281.06			
Bakhri Tojik	$D M m^3$	Planned	289.73	319.94	419.10	421.29	425.76	426.74
reservoir	K, MIII	Actual	414.77	401.12	278.52			
	W Mm ³	Planned	3522	3544	3492	3344	3183	3001
	w, wim	Actual	3497	3497	3477			
	I Man ³	Forecast	134.31	144.62	191.07	172.80	172.80	172.80
	I, MM	Actual	96.01	95.51	89.57			
C1	D M ³	Planned	449.28	449.28	494.21	449.28	449.28	449.28
Sharuara reservoir	K, MM	Actual	220.92	221.62	247.02			
	W Mm ³	Planned	4489	4141	3791	3783	3446	3109
	w, wm	Actual	4619	4373	4120			

Generation (G), Energy losses through sterile spills (L), Discharge through turbines (Q), Sterile spills (R), Head (H)

HEDS	Donomo	ton		May	
пегъ	Farame	ter	I ten-day	II ten-day	III ten-day
Naryn cascade	G, M kWh	Actual	26.2	30.0	25.3
	G, M kWh	Actual	8.4	10.4	10.1
Toktogul	$Q, m^{3}/s$	Actual	263.0	298.9	272.6
	Н, т	Actual	132.7	136.1	138.2
	G, M kWh	Actual	1.5	1.6	1.7
Andizhan	$Q, m^{3}/s$	Actual	58.5	70.5	76.7
	Н, т	Actual	95.0	95.0	95.0
	G, M kWh	Actual	1.8	1.7	1.0
Bakhri Tojik	$Q, m^{3}/s$	Actual	446.9	430.5	255.9
	Н, т	Actual	20.1	20.1	20.1
	G, M kWh	Actual	1.0	0.9	0.4
Farkhad	$Q, m^3/s$	Actual	90.4	93.0	55.1
	Н, т	Actual	30.6	30.6	30.6
	G, M kWh	Actual	3.6	5.4	7.0
Charvak	$Q, m^{3}/s$	Actual	132.5	172.0	219.0
	Н, т	Actual	115.4	125.1	131.5
	G, M kWh	Actual	1.5	1.5	1.5
Shardara	$Q, m^3/s$	Actual	250.0	250.0	247.2
	G, M kWh	Actual	20.9	20.6	20.2

Water distribution

River reach
Naryn River: tail water of Toktogul reservoir– Uchkurgan waterworks facility
Naryn River: Uchkurgan waterworks facility - Syr Darya River: inflow to Bakhri Tojik reservoir
Syr Darya River: tail water of Bakhri Tojik reservoir – inflow to Shardara reservoir
Syr Darya River: tail water of Shardara reservoir – inflow to Northern Aral Sea (Karateren settlement)
Northern Aral Sea

Water volume (W)

Toktogul -	Dom	motor		May		June			
Uchkurgan	Гага	ameter	I ten-day	II ten-day	III ten-day	I ten-day	II ten-day	III ten-day	
Inflow from upper	W, Mm^3	Planned	259.20	259.20	285.12	331.78	331.78	331.78	
reach		Actual	228.87	259.89	259.98				
Lateral inflow ²	W Mm ³	Forecast	93.50	93.50	102.85	83.93	83.93	83.93	
	w, win	Actual	178.68	147.31	105.75				
Water withdrawala	W, Mm^3	Planned	206.15	198.03	225.05	226.97	244.43	258.77	
water withdrawais		Actual	189.01	198.88	203.58				
Lossos	W Mm ³	Forecast	19.60	19.60	21.56	66.09	66.09	66.09	
Losses	w, wm	Actual	27.77	29.04	32.68				
Outflow to lower	W Mm ³	Forecast	126.95	135.07	141.36	122.65	105.19	90.85	
reach ³	w, wm	Actual	190.77	179.28	129.47				

Water volume (W)

Uchkurgan –	Donomotor		May			June		
Bakhri Tojik	Гага	ameter	I ten-day	II ten-day	III ten-day	I ten-day	II ten-day	III ten-day
Inflow from upper	W Mm ³	Forecast	126.95	135.07	141.36	122.65	105.19	90.85
reach	w, win	Actual	190.77	179.28	129.47			
Lateral inflow	W Man ³	Forecast	232.57	236.99	259.09	220.97	217.15	213.61
	w, mm	Actual	283.48	229.94	210.86			

² Incl. Karasu left and right

³ Uchkurgan waterworks facility

W	W M ³	Planned	20.02	20.04	22.33	25.40	28.01	29.71
water withdrawais	w, wm	Actual	25.52	25.12	28.38			
Losses	W, Mm^3	Forecast	10.00	10.00	11.00	30.00	30.00	30.00
		Actual	46.54	16.64	30.89			
Outflow to lower	W, Mm^3	Forecast	329.50	342.02	367.13	288.22	264.33	244.75
reach ⁴		Actual	402.19	367.46	281.06			

Water volume (W)

Bakhri Tojik -	Dow	Parameter		May		June			
Shardara	Рага	ameter	I ten-day	II ten-day	III ten-day	I ten-day	II ten-day	III ten-day	
Inflow from upper	W Mm ³	Planned	259.20	289.44	380.16	380.16	380.16	380.16	
reach ⁵	w, wm	Actual	376.70	362.97	233.97				
Lateral inflow	W Man ³	Forecast	221.37	213.11	238.26	275.64	333.65	349.14	
	w, mm	Actual	117.58	110.85	110.97				
Water withdrawala	W, Mm^3	Planned	316.26	327.93	394.35	453.00	511.01	526.50	
water withdrawars		Actual	316.87	345.16	241.98				
Lossos	W Mm ³	Forecast	30.00	30.00	33.00	30.00	30.00	30.00	
Losses	w, 1v1m	Actual	81.41	33.15	13.39				
Outflow to lower	W Mm ³	Forecast	134.31	144.62	191.07	172.80	172.80	172.80	
reach	w, 141m	Actual	96.01	95.51	89.57				

⁴ Akdzhar g/s ⁵ Kyzylkishlak g/s

Water volume (W)

Shardara -	Dow	Parameter		May			June	
Karateren	rara			II ten-day	III ten-day	I ten-day	II ten-day	III ten-day
Inflow from upper reach	$W Mm^3$	Planned	449.28	449.28	494	449.3	449.3	449.28
	vv, 1v1m	Actual	220.92	221.62	247			
Lateral inflow	W, Mm^3	Forecast	11.30	25.00	17	6.0	6.0	6.00
		Actual	9.40	9.77	6			
Filling (+), draw	W, Mm^3	Planned	259.2	302.4	333	328.3	216.0	146.88
Koksarai reservoir		Actual	259.2	290.3	323			
Water with drawala	W, Mm^3	Planned	310.0	406.7	471	374.6	356.0	347.31
water withdrawais		Actual	324.8	424.4	526			
Lossos	W, Mm^3	Forecast	401.1	361.3	362	404.7	310.9	250.53
Losses		Actual	151.6	90.8	46			
Outflow to lower	W, Mm^3	Forecast	8.6	8.6	10	4.3	4.3	4.32
reach		Actual	13.1	6.5	5			

Water volume (W), Level (H), Surface area (S)

Northorn Anal	Parameter		May			June		
Northern Arai			I ten-day	II ten-day	III ten-day	I ten-day	II ten-day	III ten-day
Inflow	W, Mm^3	Forecast	9.0	9.0	9.50	4.32	4.32	4.32
		Actual	13.13	6.48	4.75			
Water volume	W, Mm^3	Forecast	24.94	25.1	25.2	25.17	24.87	24.63
		Actual	25.02	25.15	25.20			
Water level	Н, т	Forecast	41.90	41.96	41.98	41.98	41.88	41.80
		Actual	41.93	41.97	41.99			
Water surface area	$S, th.km^2$	Forecast	3.11	3.13	3.13	3.13	3.11	3.09
		Actual	3.12	3.13	3.14			
Water releases into	W, Mm^3	Forecast	0.00	0.00	0.00	0.00	0.00	0.00
the Large Aral Sea		Actual	0.00	0.00	0.00			

Information sources

Basin Water Organization "Amu Darya" Basin Water Organization "Syr Darya"

Aral–Syrdarya Basin Water Authority Coordination Dispatch Center "Energy"

Website of the Center of Hydrometeorological Service (Uzbekistan) <u>meteo.uz</u> Central Asia Water and Ecological Knowledge Portal <u>cawater-info.net</u> Website "Weather and Climate" <u>pogodaiklimat.ru</u>

For detailed analysis of water-related situation by SIC ICWC, please, visit the CAWATER-info portal <u>cawater-info.net/analysis/index.htm</u>